Regulation of Neurogenesis by Interkinetic Nuclear Migration through an Apical-Basal Notch Gradient

نویسندگان

  • Filippo Del Bene
  • Ann M. Wehman
  • Brian A. Link
  • Herwig Baier
چکیده

The different cell types in the central nervous system develop from a common pool of progenitor cells. The nuclei of progenitors move between the apical and basal surfaces of the neuroepithelium in phase with their cell cycle, a process termed interkinetic nuclear migration (INM). In the retina of zebrafish mikre oko (mok) mutants, in which the motor protein Dynactin-1 is disrupted, interkinetic nuclei migrate more rapidly and deeply to the basal side and more slowly to the apical side. We found that Notch signaling is predominantly activated on the apical side in both mutants and wild-type. Mutant progenitors are, thus, less exposed to Notch and exit the cell cycle prematurely. This leads to an overproduction of early-born retinal ganglion cells (RGCs) at the expense of later-born interneurons and glia. Our data indicate that the function of INM is to balance the exposure of progenitor nuclei to neurogenic versus proliferative signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain

A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled....

متن کامل

Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis.

During retinal development, neuroepithelial progenitor cells divide in either a symmetric proliferative mode, in which both daughter cells remain mitotic, or in a neurogenic mode, in which at least one daughter cell exits the cell cycle and differentiates as a neuron. Although the cellular mechanisms of neurogenesis remain unknown, heterogeneity in cell behaviors has been postulated to influenc...

متن کامل

A novel function for Foxm1 in interkinetic nuclear migration in the developing telencephalon and anxiety-related behavior.

Interkinetic nuclear migration (INM) is a key feature of cortical neurogenesis. INM functions to maximize the output of the neuroepithelium, and more importantly, balance the self-renewal and differentiation of the progenitors. Although INM has been reported to be highly correlated with the cell cycle, little is known about the effects of cell cycle regulators on INM. In this study, by crossing...

متن کامل

Putting a Notch in Our Understanding of Nuclear Migration

The nuclei of progenitor cells in developing neural epithelia change their position during the cell cycle through a process called interkinetic nuclear migration. Del Bene et al. (2008) report that defects in the machinery controlling this process lead to altered exposure to Notch signals and systemic effects on neurogenesis in the retina.

متن کامل

NpgRJ_NN_1744 1099..1107

Stem cell persistence into adulthood requires self-renewal from early developmental stages. In the developing mouse brain, only apical progenitors located at the ventricle are self-renewing, whereas basal progenitors gradually deplete. However, nothing is known about the mechanisms regulating the fundamental difference between these progenitors. Here we show that the conditional deletion of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2008